

LINDOFLAMM® flame solutions.

High performance burners for flame heating applications.

LINDOFLAMM® is a complete system for heating of large work pieces, flame straightening of thick plates, sealing of flame sprayed coatings and hot forming of thick plates, tubes and profiles.

LINDOFLAMM® burners are available for two different gas combinations:

- Acetylene/oxygen for high productivity
- Acetylene/air for maximum safety and convenience

Applications

Application examples:

- ightarrow Preheating before welding, cutting and thermal spraying
- → Sintering
- → Heating operations for shrink fittings
- → Flame straightening of thick sections
- → Hot forming

Advantages

Advantages with LINDOFLAMM®:

- → Easy handling
- → High output (Higher flame temperature compared to propane)
- → Eliminates problems with moisture during heating with propane
- → Safe handling (Latest generation of injector burners for acetylene/air for maximum safety)
- → Economy (High efficiency, high productivity, low investment cost)
- → The burners are available in manual as well as mechanised versions

Description High performance burners (manual)

Specification

Pos	Burner	Gas	Working pressure bar*	Gas consumption m3/h	Connection	Hose diameter mm	Handle
1	LF-H-4	C ₂ H ₂	0,8	2,0 - 6,0	¾" LH	9,0	Diamant
		02	2,5 - 3,0	2,2 - 7,8	1⁄4″ RH	6,0	LF-S-3
2	LF-H-6	C_2H_2	0,8	4,0 - 9,0	¾″ LH	9,0	_
		02	2,5 - 3,5	4,4 - 11,7	1⁄4″ RH	6,0	_
3	LF-H-8	C ₂ H ₂	0,8	6,0 - 10,0	¾″ LH	9,0	_
		02	2,5 - 4,0	7,8 - 13,0	1⁄4″ RH	6,0	
4	LF-H-13	C ₂ H ₂	1,0	8,4 - 14,0	½″ LH	13,0	Supertherm
		02	3,0 - 5,0	11,0 - 18,1	¾″ RH	9,0	LF-S-4
5	LF-H-16	C ₂ H ₂	1,2	12,0 - 20,0	½″ LH	13,0	_
		02	3,5 - 5,5	15,6 - 26,0	¾″ RH	9,0	
6	LF-H-1-DL	C ₂ H ₂	0,6	0,25 -1,0	¾″ LH	9,0	Norm
		compress	sed 2,5 - 4,0	0,75 - 7,0	¾″ RH	-	LF-S-2
		air				_	
7	LF-H-2-DL	C ₂ H ₂	0,6	0,45 - 1,8	¾″ LH	_	
		compress	sed 2,5 - 4,0	4,0 - 16,0	¾″ RH	-	
		air					

 $^{^{\}star}$ measured at the burner inlet